Origin and expansion of haplogroup H, the dominant human mitochondrial DNA lineage in West Eurasia: the Near Eastern and Caucasian perspective.

نویسندگان

  • U Roostalu
  • I Kutuev
  • E-L Loogväli
  • E Metspalu
  • K Tambets
  • M Reidla
  • E K Khusnutdinova
  • E Usanga
  • T Kivisild
  • R Villems
چکیده

More than a third of the European pool of human mitochondrial DNA (mtDNA) is fragmented into a number of subclades of haplogroup (hg) H, the most frequent hg throughout western Eurasia. Although there has been considerable recent progress in studying mitochondrial genome variation in Europe at the complete sequence resolution, little data of comparable resolution is so far available for regions like the Caucasus and the Near and Middle East-areas where most of European genetic lineages, including hg H, have likely emerged. This gap in our knowledge causes a serious hindrance for progress in understanding the demographic prehistory of Europe and western Eurasia in general. Here we describe the phylogeography of hg H in the populations of the Near East and the Caucasus. We have analyzed 545 samples of hg H at high resolution, including 15 novel complete mtDNA sequences. As in Europe, most of the present-day Near Eastern-Caucasus area variants of hg H started to expand after the last glacial maximum (LGM) and presumably before the Holocene. Yet importantly, several hg H subclades in Near East and Southern Caucasus region coalesce to the pre-LGM period. Furthermore, irrespective of their common origin, significant differences between the distribution of hg H sub-hgs in Europe and in the Near East and South Caucasus imply limited post-LGM maternal gene flow between these regions. In a contrast, the North Caucasus mitochondrial gene pool has received an influx of hg H variants, arriving from the Ponto-Caspian/East European area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origin and diffusion of mtDNA haplogroup X.

A maximum parsimony tree of 21 complete mitochondrial DNA (mtDNA) sequences belonging to haplogroup X and the survey of the haplogroup-associated polymorphisms in 13,589 mtDNAs from Eurasia and Africa revealed that haplogroup X is subdivided into two major branches, here defined as "X1" and "X2." The first is restricted to the populations of North and East Africa and the Near East, whereas X2 e...

متن کامل

Fine Dissection of Human Mitochondrial DNA Haplogroup HV Lineages Reveals Paleolithic Signatures from European Glacial Refugia.

Genetic signatures from the Paleolithic inhabitants of Eurasia can be traced from the early divergent mitochondrial DNA lineages still present in contemporary human populations. Previous studies already suggested a pre-Neolithic diffusion of mitochondrial haplogroup HV*(xH,V) lineages, a relatively rare class of mtDNA types that includes parallel branches mainly distributed across Europe and We...

متن کامل

New Population and Phylogenetic Features of the Internal Variation within Mitochondrial DNA Macro-Haplogroup R0

BACKGROUND R0 embraces the most common mitochondrial DNA (mtDNA) lineage in West Eurasia, namely, haplogroup H (approximately 40%). R0 sub-lineages are badly defined in the control region and therefore, the analysis of diagnostic coding region polymorphisms is needed in order to gain resolution in population and medical studies. METHODOLOGY/PRINCIPAL FINDINGS We sequenced the first hypervaria...

متن کامل

Reproductive toxicology. Caffeine.

Background: The out of Africa hypothesis has gained generalized consensus. However, many specific questions remain unsettled. To know whether the two M and N macrohaplogroups that colonized Eurasia were already present in Africa before the exit is puzzling. It has been proposed that the east African clade M1 supports a single origin of haplogroup M in Africa. To test the validity of that hypoth...

متن کامل

Molecular Genealogy of a Mongol Queen’s Family and Her Possible Kinship with Genghis Khan

Members of the Mongol imperial family (designated the Golden family) are buried in a secret necropolis; therefore, none of their burial grounds have been found. In 2004, we first discovered 5 graves belonging to the Golden family in Tavan Tolgoi, Eastern Mongolia. To define the genealogy of the 5 bodies and the kinship among them, SNP and/or STR profiles of mitochondria, autosomes, and Y chromo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 24 2  شماره 

صفحات  -

تاریخ انتشار 2007